Evaluating Image Enhancement using Semantic Tasks
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Overview Evaluation Protocol Language scores

* Evaluation of generative models in the visual domain is often  Captioning maps the semantics of images into a much finer and rich label BLEU_1 | BLEU_2 | BLEU_3 | BLEU_4 | METEOR | ROUGE L | CIDEr | SPICE | VIFIDEL
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* Using signal based metrics often leads to counterintuitive results: ORIG | 0.800 | 0.630 | 0.480 | 0.360 | 0.280 0.570 1200 | 0.210 | 0.313

* highly natural crisp images may obtain worse scores than * We devise the following evaluation protocol for image enhancement:
blurry ones. 1. We pick an image captioning algorithm A [2] . * Image details that are compromised by the strong compression
2. We generate a sequence of words describing the image in detalil. induce errors in the captioning algorithm.

3. We look at performance of a captioning algorithm A on different * GAN is able to recover an image which is not only pleasant to the
versions of dataset: compressed, original and restored. human eye but recovers details which are also semantically

relevant to a captioning algorithm.
Results
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* Human based image assessment is expensive and time consuming. 1A couple of people sitting nt to a christmas tree. A man riding a wave on a surfboard in the ocean
* We advocate the use of language generation tasks to evaluate the | |
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Image Restoration * Correlation coefficient p between BRISQUE,
* We train a Generative Adversarial Network inspired by [1] for * According to human viewers, GAN is able to produce images perceptually of Ve P NIQE, CIDEr and MOS for all versions of the
artifact removal. : : : : o NIOE -.84 Mages.
much higher quality than the images from which they are originated. . . . .
BRISQUE | -.89 * Afine-grained semantic task as image
Reference and No-Reference Metrics CIDEr .96 captioning is a good proxy of real human
judgment.
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