Extending the autonomy envelope of space applications: a research path

Angelo Oddi and Riccardo Rasconi

Planning and Scheduling Technology Laboratory Institute of Cognitive Science and Technologies (ISTC-CNR), Rome, Italy

LEVELS OF AUTONOMY

- Current levels of autonomy defined by European Cooperation for Space Standardization (ECSS) for Mission Nominal Operations Execution:
 - Level E1: tele-operation
 - Level E2: execution of pre-planned mission operations onboard, i.e. <u>automatic</u> <u>operation</u>
 - Level E3: automatic selection of pre-filled plans, i.e. <u>semi-autonomy</u>
 - Level E4: autonomous planning based on exogenously provided goals, and execution of the synthesized plans according to the Sense-Plan-Act paradigm, i.e. <u>fully autonomous operation</u>

Mars-Express Mission

- Launched on June 2003
- The space probe is orbiting around Mars since January 2004 (very successful mission)
- Seven scientific payloads which collect data to study the Martian atmosphere and the planet's structure and geology
- 2-3 Gb of data generated on a daily basis

MEX: relevant subsystems

Mexar2*: Model-based interactive problem solving

(*) ESA Contract No. 4000112300/14/D/MRP "Mars Express Data Planning Tool MEXAR2 Maintenance"

Pushing forward the level of Autonomy

- Unknown and unstructured environments
- How can robot deal with uncertainty?
- How can autonomous robots acquire knowledge and skills to solve problems that are unforeseeable at design time?

LEVELS OF AUTONOMY

Current levels of autonomy defined by European Cooperation for Space Standardization (ECSS) for Mission Nominal Operations Execution:

- Level E1: tele-operation
- Level E2: execution of pre-planned mission operations onboard, i.e. <u>automatic</u> <u>operation</u>
- Level E3: automatic selection of pre-filled plans, i.e. <u>semi-autonomy</u>
- Level E4: autonomous planning based on exogenously provided goals, and execution of the synthesized plans according to the Sense-Plan-Act paradigm, i.e. <u>fully autonomous operation</u>
- Pushing the envelope of autonomy one step farther
 - "Level E5": self-generation of goals and autonomous learning of the skills necessary to achieve them: goals are autonomously generated, planned for, and executed to the aim of increasing the knowledge of the mission environment

From Sense-Plan-Act to Discover-Plan-Act

IMPACT* architecture

Main features implemented by IMPACT:

- Implementation of high-level policies to control the interleaving of all phases of the agent's life: reasoning, execution, learning;
- Automatic abstraction of the newly acquired skills from a sub-symbolic level to a high-level symbolic representation (e.g., Planning Domain Definition Language), and autonomous enrichment of the planning domain by adding symbolic knowledge on new states and operators;

 Autonomous learning of new skills based on selfgenerated goals driven by intrinsic motivations.

(*) A. Oddi, R. Rasconi, V.G. Santucci, G. Sartor, E. Cartoni, F. Mannella, G. Baldassarre. Integrating Open-Ended Learning in the Sense-Plan-Act Robot Control Paradigm", Proceedings of the 24th European Conference on Artificial Intelligence, ECAI 2020.

Long-Term Autonomy and Lifelong Learning agents

- In general Long Term Autonomy (LTA) is the ability of a robotic system to:
 - perform reliable operations for long periods of time under changing environmental conditions;
 - increase over time its knowledge about the environment.
- LTA module is intended to provide answers to the following questions:
 - When to calculate a new PDDL domain?
 - Which part of experience will you keep?
 - $\circ\,$ When should the system explore the environment?

Autonomous enrichment of high-level (PDDL) knowledge

- Learning to grasp a new object given previous knowledge and skills
- The system is endowed with a pre-programmed skill that can grasp a generic object in front of the rover
- The skill was designed to work with small objects (left). We want to demonstrate that the robot is
 autonomously able to recognize a new context (the big object, right), learn how to grasp it, and enrich
 its symbolic knowledge base accordingly.

Autonomous enrichment of high-level (PDDL) knowledge

Old cube-grasping operator

```
(:action opt_4
    :parameters ()
    :precondition (and (Symbol_0) (Symbol_7)
    (Symbol_9))
    :effect (and (Symbol_5) (not (Symbol_7)))
```

Symbol_0: Object in sight Symbol_7: Object not grasped Symbol_9: Object not stowed Symbol_5: Object grasped

New autonomously synthesized operator

```
(:action opt_7
    :parameters ()
    :precondition (and (Symbol_0) (Symbol_10)
    (Symbol_7) (Symbol_9))
    :effect (and (Symbol_5) (not (Symbol_7)))
```

Symbol_0: Object in sight Symbol_7: Object not grasped Symbol_9: Object not stowed Symbol_5: Object grasped

Symbol_10: Object is VASE

Conclusions

- Sense-Plan-Act is one of the core ideas to realize autonomous systems
- The integration of planning and learning is a promising approach experienced during the IMPACT* project to increase the level of autonomy for an intelligent controller
- **Challenge**: Long-Term Autonomy strategies based on the integration of symbolic planning and open-ended learning to foster new symbolic knowledge acquisition based on previously learned high-level models (bootstrap learning).

(*) Project: IMPACT - Intrinsically Motivated Planning Architecture for Curiosity-driven roboTs. Funded by the European Space Agency (ESA), ESA Innovation Triangle Initiative (ITI) 2017, contract N. 4000124068/18/NL/CRS. Contact: Angelo Oddi (angelo.oddi@istc.cnr.it)

Disclaimer: the view expressed in this presentation can in no way be taken to reflect the official opinion of the European Space Agency.

THANKS

Does anyone have any questions?

angelo.oddi@istc.cnr.it

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**. **Please keep this slide for attribution.**